Selasa, 13 September 2016

TUGAS TERSTRUKTUR PERTEMUAN 2 & 3

 TUGAS TERSTRUKTUR
1. Menurut Louis de Broglie bahwa elektron mempunyai sifat gelomabang sekaligus juga partikel. Jelaskan keterkaitan dengan teori mekanika kuantum dan teori orbital molekul?

2. Bila absorpsi sinar UV oleh ikatan rangkap menghasilkan promosi elektron ke orbital yang berenergi lebih tinggi. Transisi elektron manakah memerlukan energi terkecil bila sikloheksena berpindah ke tingkat tereksitasi?

Jawab :

1. Pada tahun 1924, Louis de Broglie, menjelaskan bahwa cahaya dapat berada dalam suasana tertentu yang terdiri dari partikel-partikel, kemungkinan berbentuk partikel pada suatu waktu, yang memperlihatkan sifat-sifat seperti gelombang. Louis de Broglie mengungkapkan konsep dualisme materi melalui eksperimen difraksi berkas elektron yaitu suatu materi memiliki dua sifat sebagai partikel juga sebagai gelombang. Sifat partikel dan gelombang suatu materi tidak tampak sekaligus, sifat yang tampak jelas tergantung pada perbandingan panjang gelombang de Broglie dengan dimensinya serta dimensi sesuatu yang berinteraksi dengannya. Sebagai contoh petir dengan kilat. Anda tentu pernah mendengar petir dan melihat kilat ketika turun hujan. Kilat terlebih dulu kita lihat sebelum petir kemudian kita dengar. Hal ini dapat kita jelaskan bahwa kilat merupakan sifat gelombang berwujud cahaya sedangkan petir merupakan sifat partikel berupa suara. Fakta ini salah satu yang mendukung konsep dari dualisme Louis de Broglie. Inilah yang mendasari munculnya teori mekanika kuantum. Heseinberg ( 1901 – 1976 ) mengemukakan bahwa elektron tidak dapat ditentukan keberadaannya secara pasti. Keberadaan elektron hanya merupakan kebolehjadian menemukan elektron pada suatu area tertentu. Hal ini disebabkan tidak mungkin dapat ditentukan posisi sekaligus momentum dari suatu benda bergerak. Prinsip ketidakpastian ini menunjukan keterbatasan pengetahuan manusia. Pada tahun 1926 kemudian Erwin Schrodinger ( 1887 – 1961 ) menyusun teori atom dengan berlandaskan hipotesis Louis Broglie dan Heseinberg bahwa materi memiliki sifat dualisme yaitu bersifat partikel dan bersifat gelombang dan elektron tidak bisa ditentukan dengan tepat posisi dan momentumnya secara bersamaan. Sifat atom dalam hal ini dapat dijelaskan dengan lebih baik berdasarkan sifat gelombangnya. Schrodinger mengungkapkan melalui persamaan fungsi gelombang schrodinger ( ψ atau psi ) bahwa kebolehjadian menemukan elektron pada area tertentu dikenal dengan konsep orbital yaitu Area dimana elektron berpeluang besar untuk ditemukan.
Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.
Persamaan Schrodinger :
 

Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini. Model atom mutakhir atau model atom mekanika gelombang
Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.
CIRI KHAS MODEL ATOM MEKANIKA GELOMBANG
1. Gerakan elektron memiliki sifat gelombang, sehingga lintasannya (orbitnya) tidak stasioner seperti model Bohr, tetapi mengikuti penyelesaian kuadrat fungsi gelombang yang disebut orbital (bentuk tiga dimensi darikebolehjadian paling besar ditemukannya elektron dengan keadaan tertentu dalam suatu atom)
2. Bentuk dan ukuran orbital bergantung pada harga dari ketiga bilangan kuantumnya. (Elektron yang menempati orbital dinyatakan dalam bilangan kuantum tersebut)
3. Posisi elektron sejauh 0,529 Amstrong dari inti H menurut Bohr bukannya sesuatu yang pasti, tetapi bolehjadi merupakan peluang terbesar ditemukannya elektron.





2.  Penyerapan sinar UV atau sinar tampak oleh suatu molekul menghasilkan eksitasi elektron bonding. Akibatnya panjang gelombang absorbsi maksimum dapat dikorelasikan dengan jenis ikatan yang ada dalam molekul yang diselidiki. Oleh karena itu spektroskopi serapan molekul berguna untuk mengidentifikasi gugus fungsional yang ada dalam suatu molekul. Akan tetapi yang lebih penting adalah penggunaan spektroskopi serapan UV dan sinar tampak untuk penentuan kuantitatif senyawa-senyawa yang mengandung gugus pengabsorbsi.

Pada transisi elektronik inti-inti atom dapat dianggap berada pada posisi yang tepat. Hal ini dikenal dengan prinsip Franck-Condon. Disamping itu dalam proses transisi ini tidak semua elektron ikatan terpromosikan ke orbital antiikatan.
Berdasarkan jenis orbital tersebut maka, jenis-jenis transisi elektronik dibedakan menjadi empat macam, yakni:
1) Transisi σ → σ*
2) Transisi π → π*
3) Transisi n → π*
4) Transisi n → σ*

Keterangan
· σ : senyawa-senyawa yang memiliki ikatan tunggal
· π : senyawa-senyawa yang memiliki ikatan rangkap
· n menyatakan orbital non-ikatan: untuk senyawa-senyawa yang memiliki elektron bebas.
· σ* dan π* merupakan orbital yang kosong (tanpa elektron), orbital ini akan terisi elektron ketika telah atau bila terjadi eksitasi elektron atau perpindahan elektron atau promosi elektron dari orbital ikatan.
Transisi elektronik menimbulkan spektra serapan pada daerah sinar tampak dan ultra violet pada senyawa-senyawa organik. Umumnya dalam molekul poliatomis terutama dalam molekul organik, orbital pengikatan atom bukan pengikatan di isi sehingga transisi elektron dengan panjang gelombang terpanjang melibatkan pengikatan elektron dari orbital molekul tidak terisi yang tertinggi ke orbital molekul tidak terisi yang terendah. Spektrum gelombang elektromagnetik dan transisi elektron adalah perpindahan elektron dari orbit yang satu ke orbit yang lain dengan memancarkan gelombang elektromagnetik. Ketika berpindah dari orbit yang luar ke orbit yang dalam, elektron akan memancarkan energy sebesar E=hf, dengan f adalah frekuensi gelombang yang dipancarkan. Energi yang dimiliki sinar UV mampu menyebabkan perpindahan elektron (promosi elektron) atau yang disebut transisi elektronik. Transisi elektronik dapat diartikan sebagai perpindahan elektron dari satu orbital ke orbital yang lain. Disebut transisi elektronik karena elektron yang menempati satu orbital dengan energi terendah dapat berpindah ke orbital lain yang memiliki energi lebih tinggi jika menyerap energi, begitupun sebaliknya elektron dapatberpindah dari orbital yang memiliki energi lebih rendah jika melepaskan energi. Energi yang diterima atau diserap berupa radiasi elektromagnetik.Transisi elektronik menimbulkan spektra serapan pada daerah sinar tampak dan ultra violet pada senyawa-senyawa organik. Umumnya dalam molekul poliatomis terutama dalam molekul organik, orbital pengikatan atom bukan pengikatan di isi sehingga transisi elektron dengan panjang gelombang terpanjang melibatkan pengikatan elektron dari orbital molekul tidak terisi yang tertinggi ke orbital molekul tidak terisi yang terendah.

Tidak ada komentar:

Posting Komentar